数学方程式不仅能够帮助人们解决知识上的问题,同时,从某种角度来看,它们本身也是非常美丽的。许多科学家都曾坦承,自己非常喜欢某些方程式,并不仅仅因其功能,更在于它们所表现出的那种简约而不简单、形式如诗句般优雅的美感。
以下,便是由LiveScience网站刊登出的世界各国科学家们鼎力推荐的美丽方程:
一、广义相对论
该方程式由20世纪最伟大的物理学家爱因斯坦于1915年提出,是开创性理论——广义相对论的组成部分。它颠覆了科学家们此前对于引力的定义,将其描述为时空扭曲的结果。
“直到现在,我依然为单独一个数字方程就可以完整覆盖时空的定义而感到震惊。”美国空间望远镜研究所天体物理学家马里奥·利维奥表达了自己对该方程的推崇,“这个方程式堪为爱因斯坦天才智慧的结晶。”
利维奥解释道:“该方程式的右边部分,代表着我们所在宇宙,包括推动宇宙膨胀的暗物质在内的总能量。左边则表述了时空的几何形式。左右两边合起来描述了爱因斯坦广义相对论的实质,即质量和能量决定了时空的几何形式以及曲率,表现为我们俗称的引力。”
“这是个优雅的方程。”纽约大学的物理学者凯尔·克兰默尔对利维奥的意见表示赞同。同时,他还指出该方程式展示了时空、质量与能量之间的关系。“这个方程式告诉人们三者之间的相互关联,比如太阳的存在是如何扭曲了时空,导致地球围绕它进行轨道运动。它还解释了宇宙自大爆炸之后的情况,以及预言了黑洞的存在。”
二、标准模型
这是另外一条被物理学界奉为经典条文的方程式。标准方程描述了那些被认为组成了当前宇宙的基本粒子。它还能够被压缩为以18世纪法国著名数学和天文学家约瑟夫·路易斯·拉格朗日命名的简化形式。
美国加州斯坦福直线加速器中心理论物理学家兰斯·迪克森推荐了该方程式。在他看来,它成功地描述了除重力之外,人们迄今为止在试验室中所发现的基本粒子与力,其中就包括新近被发现的被称为“上帝粒子”的希格斯玻色子,即该方程式中的希腊字母“φ”。
不过,尽管标准方程与量子力学、狭义相对论可以彼此兼容,但是却难与广义相对论建立统一关系,因此它在描述重力上无能为力。
三、微积分基本定理
如果说,广义相对论与标准方程描述的是宇宙的某些特殊方面,那么其他一些方式则适用于所有情况,比如微积分基本定理方程。
该方程式堪为微积分学的肱骨理论,并且把积分与导数这两个微积分学中最为重要的概念联系在一起。“简单地说,它表述了某平滑连续变量的净变值,比如其在特定时间内走过的距离,等于这个量变化率的积分,即速度的积分。”美国福特汉姆大学数学系主任马尔卡纳·布拉卡洛娃-特里维西克说。“微积分基本定理让我们能够在整个间隔变化率的基础上,测算某一间隔的净变值。”
说到微积分,实际上早在古代该学科的萌芽就已经开始萌发,直到17世纪时最终由伊克萨·牛顿整理成科,并开始将其应用于描述行星围绕太阳的运动规律。
四、勾股定理(也称:毕达哥拉斯定理)
该定理可谓老而弥香的骨灰级理论,几乎是每个学生开始学习生涯后,学到的第一批几何知识之一。
这条定理的具体内容是:任何直角三角形的两个直角边长度的平方相加,其和等于剩下那条斜边长度的平方。
“毕达哥拉斯定理,是第一个让我感到震惊的数学定理。”推荐这条方程式的美国康奈尔大学数学家戴安娜·塔米娜说。而她给出的理由是:“这条几何学中的定理,也同样能够用数字进行表达。这对于当时还是个孩子的我来说,是多么的奇妙有趣。”
五、欧拉方程
这个看起来非常简单的方程式,实质上描述了球体的本质。用马萨诸塞州威廉姆斯学院的数学家科林·亚当斯的话说:“如果你能够将一个球体分割成为面(F)、边(F)和点(V),那么这些面,边和顶点之间的关系,必定符合V-E+F=2。”
在亚当斯看来,该方程式最大的魅力在于,它以一个包含面、棱和顶点数目的方程,体现了不同形状物体的本质属性。不管代入的是什么样的物体,该程式的结论都是成立的。比如,除了球体,如果人们考察5面金字塔形,即4个三角形与1个正方形的组合,就会发现等号的右边,一样会是数字2。
六、狭义相对论
爱因斯坦再次因为自己的相对论入选本次评选,只不过这次是狭义而不是广义相对论。
狭义相对论并没有把时间和空间看做绝对、静止的概念,它们呈现的状态与观察者的速度有关。这个方程式描述了随着观察者向某一方向移动的速度加快,时间是如何膨胀,或者说开始变慢。
“该方程式最伟大的一点,恰恰在于它是那么的平易近人。”欧核中心粒子物理学家比尔·莫瑞说。“整个方程中并没有代数等复杂的运算,一个普通中学生都能够完成计算。当然,它不可能仅仅只是这么简单。实际上,这个方程式提供了一种全新的看待宇宙的角度和方式,一种看待人们与现实世界之间关系的态度。而最精妙的是,要反映这么深厚的内涵,该方程式却只借助了最为简单的数学方式,任何想要解读它的人都可以得偿所愿。”莫瑞表示。
在莫瑞看来,与爱因斯坦的广义相对论相比,这位大科学家的狭义相对论更令自己钟爱。因为理解前者所需要的那些深奥数学知识,连他这样的专业学者都会感到一头雾水。
七、1=0.999999999......
从形式上看,这是一个很简单的等式。1等于0.99999……这个无穷数。之所以推荐这个等式,美国康奈尔大学数学家斯蒂文·斯特罗盖茨的理由是“每个人都能理解它,但同时人们又会觉得有些不甘心,不太愿意相信这种“简单”意味着“正确”。在他看来,这个等式展现了一种优雅的平衡感——1代表着数学的起始点,而右边的无穷数则寓意无限的神秘。
八、卡伦·西曼吉克方程
“卡伦·西曼吉克方程可以说是上世纪70年代以来,最为重要的方程之一。它告诉我们在量子世界里,需要全新的思维和眼光。”美国罗格斯大学理论物理学家马特·斯特拉瑟给出了自己的推荐理由。多年来,该方程在诸多方面都得到了有效应用,包括令物理学家们测量质子和种子的质量。
按照基础物理学,两个物体之间的引力和电磁力,与两物体之间距离的平方成反比。将质子、中子聚合在一起组成原子核的那种力量,也具有此属性。它同样也是将夸克聚合在一起形成质子和中子本身的原因。不过,哪怕微小的量子震荡,都会或多或少地改变这种力量与距离之间的关系状况。
“这种特性,阻止了该力量做长距离延伸时产生衰减,并且使其令其能够捕获夸克并将其压聚成为质子和中子,进而构成组成人类世界的原子。因此,卡伦·西曼吉克方程的意义就在于,用相对简单易行的计算效果,将这种剧烈且难于计算的重要关系表达了出来。”斯特拉瑟说。
九、极小曲面方程
“这个方程某种程度上解释了人们吹出的那些肥皂泡的秘密。”威廉姆斯学院数学家弗兰克·摩根在推荐时表示,该程式是非线性的,蕴含了指数、微积分等知识,描述了美丽肥皂泡性质背后的数学。这与人们相对熟悉的热方程,波动方程以及量子力学领域的薛定谔方程等线性偏微分方程,有着很大的不同。
十、欧拉线
“首先,从任意一个三角形开始,画出圆周经过该三角形三个顶点的圆并找到圆心。接着,找出三角形的重心,并对着它的三条边分别作垂线,画出相交点。这样,得到的三个点都位于一条直线上(即三角形的外心、重心和垂心处于同一直线),而这条直线就是这个三角形的欧拉线。”纽约数学博物馆创办人格兰·惠特尼如此解释欧拉线。在他看来,这条定理展现了数学的魅力与力量,因为那些表面显得简单而熟悉的图形,实际上却展示了足以令人惊讶的内容。
via 看中国 http://feedproxy.google.com/~r/kanzhongguo/www/~3/RUD9kbjZeas/492667.html
No comments:
Post a Comment